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Abstract. The localization of eigenfunctions in finite samples of the ID Anderson 
and Lloyd models is quantitatively described by the information length. This quan- 
tity is numerically investigated for both models and it is found to scale with the size 
of the sample and the disorder accordin6 to a simple l aw.  

1. Introduction 

The dynamical phenomenon of localization, common to many models of quantum 
chaos, has often been compared with that of Anderson localization, occurring in dis- 
ordered crystals [l]. The diffusive absorption of energy that follows the appearance of 
chaos in periodically perturbed nonlinear classical system is strongly limited and may 
even be suppressed by quantization. The ‘kicked rotator’ has been a prototype for this 
phenomenon and in that case a formal connection with models of the Anderson type 
has been found 121. In both cases one has to deal with eigenfunctions-f the Hamil- 
tonian in the Anderson case, of a Floquet operator in the dynamical case-that are to 
some extent localized inside a finite ‘sample’ of a fixed size. These eigenfunctions have 
a random aspect and their statistical properties may be described in the language of 
multifractals [3]. How various statistics related to such eigenfunctions scale with the 
size of the sample and with the disorder is also a common problem in the two cases. In 
the dynamical case this issue has been investigated by analysing the behaviour of the 
so called ‘entropic localization length’ of eigenfunctions [4,5], which was  indeed found 
to obey a scaling law. The band structure of the relevant Floquet matrix and the high 
degree of randomness of the matrix elements then suggested that such a scaling could 
be more generally a property of band-random matrices, which indeed was shown to 
be true [6]. 

In the case of the Anderson model the scaling properties are not usually referred 
to the entropic length but to the inverse Lyapunov exponent, which can be efficiently 
computed by means of the transfer matrix method and which is moreover directly 
related to the residual conductance via the Landauer formula [?I. Therefore, a direct 
comparison of these different scaling laws is not possible. On the other hand, the 
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entropic length (and, possibly other generalized lengths, like the inverse participation 
ratio) appear to be much more convenient when a very large number of sites are cou- 
pled by the interaction. This is typical in the semi-classical regime of models that 
are endowed with a well-defined classical limit and in such cases a transfer matrix 
approach is impossible. In order to compare the scaling properties of dynamical lo- 
calization and of band-random matrices to those of Anderson localization, one has 
therefore to reformulate the latter in terms of entropic or related lengths. 

In this paper we investigate the scaling properties of the entropic length for the 
Anderson and for the Lloyd model. Our numerical results yield evidence that these 
models exhibit a similar scaling law. Though it is not clear how this scaling law 
may be related to the scaling theory of conductance, it has the important property of 
taking the same form in both cases, as soon as a proper choice of variables is made. 
This raises the interesting question of whether the same scaling law can be found in 
different models of localization. 

2. The tight-binding Hamiltonian 

The tight-binding models we investigate are characterized by Hamiltonians with a 
tridiagonal symmetric structure and random diagonal entries. The eigenvalue equa- 
tion is 

(xu)n = U,+]. + V”U, + = Eu, (1) 

The boundary condition are U,, = uN+l = 0 and the potential {V,} is a set of N 
independent random variables, with the same probability distribution P(V). 

We shall consider the two important cases of the Anderson and Lloyd models, with 
probabilities given respectively by: 

for -Wf2 E: v < Wf2 
elsewhere 

PW(V) = { ;fw 

Other models which have largely been studied in this context are Characterized by a 
non-random potential, specified by a periodic function whose period is incommensu- 
rate with the lattice spacing. Two examples ate Harper’s (or Mathieu) equation [8] 
and the ‘Maryland model’ [9]. 

It is mathematically proven that the above random models in the large N limit 
display exponentiauy localized eigenfunctions, no matter how small the disorder; the 
rate of decay is measured by the Lyapounov exponent y which may be evaluated 
by Thouless’ formula [lo] or by the transfer matrix method [ll]. The latter is a 
convenient method for translating the recurrence relation for the eigenfunction into a 
multiplicative procedure 

( y  ) = [ k=1 ir vk -I)] 0 (:;) (4) 
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Since uo = 0, with u1 = 1 this is precisely the recurrency property for the determinants 
of the Jacobi submatrices of H, and therefore uN+l = Det(E - H), which shows that 
the eigenvalues are determined by the boundary condition uN+l = 0. Although y for 
a finite N depends on the realization of the disorder, in the limit N --t 00 it converges 
to a non-random value, the inverse of which is known as the localization length <-. 
In the Anderson case, the dependence of the localization length on energy is rather 
complicated. For small disorder (small W) it has been evaluated in [12,13] for different 
energy ranges. For example, at E = 1 it was found that 

<zl = (W2/72)[1 - (2/3)W'@ + (l/60)W2 + . . .]. 

.&I = log(W/2) - 14.. , . . 

( 5 0 )  

In the opposite case of large disorder (E < W) the behaviour is 

(5b) 

For the intermediate range one has to compute numerically the rate of exponential 
growth of vectors under repeated application of the transfer matrices for very long 
samples (figure 1). 

As for the Lloyd model, the Lyapunov exponent can be found analytically in the 
limit N -.+ m: 

1 + E)2  + W 2  + 41,/(2 - E ) 2  + W 2  

The scaling theory for the metal-insulator transition has received an elegant formula- 
tion in the formalism of tight-binding models, where it relates the inverse Lyapunov 
exponent f N  for finite samples of size N to the localization ratio The scaling 
assumption is [7] 

where f(z) is a scaling function. The form of this function is very important, because 
it is directly related to  the behaviour of the conductance as a function of the sample 
size [7]. 

In this paper we characterize the structure of eigenfunctions by means of a different 
parameter: the informalion, or entropic localization length [4], which is defined in 
terms of the Shannon entropy, as follows. The Shannon entropy of a normalized state 
(uL, u2, , , , , uN) is: 

N .. 
If[=,, . . . , U N ]  = - C u t l o g u ;  

i= l  

In our study we consider ensembles of states specified by the value of the energy E 
and by different realizations of the random potential. For such ensembles, we define 
the average normalized information length: 

P(E, N ,  W )  = ~ P F  - HE,] (9) 

where ?? is the entropy of the state of energy E, averaged over disorder, and HE,  is a 
normalization entropy computed as the average entropy in some reference ensemble. 
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The great advantage of this definition is the applicability in both extended and 
localized states; moreover, it has been shown to correspond to the common intuition 
of the fraction of unperturbed states which, on the average, are significantly populated 
by eigenstates with the given energy [7,14-161. 

= 1, 
that which corresponds to maximally delocalized states. These are obtained in the 
limit of vanishing disorder and have the form of plane waves. The eigenvalues are 
E ( h )  = 2cos[ka/(N + l)], k = 1,. . . , N with eigenfunctions 

In our case, we choose as reference ensemble, which by definition will have 

n = l ,  ..., N .  
N + l  

These eigenfunctions represent the limiting case of infinite localization ratio; no ran- 
domness survives in them. Their entropy for large N has the same value irrespective 
of the label k of the eigenvalue: H,, = log(2N) - 1. This is an important differ- 
enre to the case of band-random matrices, where the maximally extended states are 
completely random ones. In that case, the reference ensemble is the microcanonical 
ensemble and the reference entropy has to be computed accordingly 14,141. 

L" w 
Figure 1. Numericdy computed localization length & versus disorda for the An- 
derson model for E = 1. The broken curve8 represent respectively the thcoretical 
limits at low disorder (equation (50)) andhighdisorder (equation ( S b ) ) .  The exper- 
imental line is obtained by awaeng over disorda and for a sample of length 2 x 10% 
for In(W) < -2 (where fluctuations are larger) and length lo5 for In(tV) > -2. 

3. Numerical results 

The numerid work reported here was aimed at investigating how the information 
length (9) scales with disorder and with sample size. The scaling law (7) suggests that 
p ( N , E ,  U') (which for any given N,E, W yields a measure of the spread of the eigenvec- 
tors) may be essentially determined by the sample size N and by the localization ratio 
< , / N .  As a matter of fact, this sort of scaling has been actually found to hold for 
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the Kicked Rotator model [5] and for band-random matrices 161. Our present results 
for the Anderson model (figure 2) provide evidence of a scaling law of the form: 

1.0 

0.8 

0.6 

P 
0.4 

0.2 

The same scaling is also made apparent by the log-log plot in figure 3, which demon- 
strates the following dependence equivalent to (11): 

" ~ " ' " ' ~ " " ~ ' " " ' ' " ~ ' " '  

~ t * a  +: 
a4 ' - 

d 
- 

- 

0 

D 

- 

log - P = logr$) + c 
1 - P  

In our computations on the Anderson model, E was taken in two different 'energy 
windows' of width AE = 0.1, centred at E = 0.1 and at E = 1.0 respectively. The 
value of was obtained by statistically averaging over an ensemble of random samples 
of size N = 400-3200. For every fixed sample size, a large number of results (up to 
1000) were generated. For every sample we computed the average entropy of the 
eigenstates whose energies were found to lie in the chosen window; the result was 
further averaged over the different samples of the same size and finally substituted 
into (9). 
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In this case the data give C 1.4. 

4. A model-independent form of the scaling law 

Because the value of the constant C in the scaling law (12) depends on the model 
(Anderson or Lloyd) and on the energy window as well, the scaling law as expressed 
in (12) is not the same in all those cases. However, the fact that this law is linear in 
all cases allows for an interesting invariant reformulation. 

In allcases we found a scaling relation that, upon substituting in (11) the definition 
(9) of p ,  takes the general form: 

where W is a measure of disorder, b(W) is an ‘intensive’ (i.e. N-independent) parame- 
ter like <- for Anderson and Lloyd or W 2  for band-random matrices (in that case W is 
the bandwidth), and finally N is the size of the system. The energy dependence is here 
unimportant and we have dropped it. The value of IC depends on the model and on 
the energy. In any case, one has the large-N asymptotics H,,(N) - log(N/c) (with c 
being a model-dependent constant) or exp[-HmI(N)] - c/N. Upon substituting this 
in (13) and taking the limit N - CO one finds 

cep(m*w) = I C ~ ( W )  
that can be used to eliminate Kq4 from (13); in this way the constant c also drops out 
and one finally finds 

- 
(14) e-H(N,W) = ,-?l(m,W) + e-P(NP) 

The sample size N now enters through exp[HWI(N)] which may be thought of as an 
effective size of the sample. By defining the length d(N, W )  = expz (N,  W )  for the 
sample of N sites and disorder parameter W ,  we therefore obtain: 

5. Conclusions 

The phenomenon of quantum localization is common to several models, including 
some that are not directly related to electronic transport in disordered solids and 
are quite different from the tight-binding models where that phenomenon was first 
identified. This is the case of models of ‘quantum chaos’, where important progress 
was made possible by the use of ideas and concepts from the theory of the Anderson 
localization. In particular, a scaling property was found in the Kicked Rotator model 
for the ‘information length’oflocalized eigenstates. In order to assess precisely to what 
extent this sort of scaling is simila to the scaling in ID tight-binding models, we set out 
to investigate the scaling properties, if any, of the same quantity in the Anderson and 
the Lloyd model. We have found numerical evidence that these models also display a 
scaling law for the information length; moreover, this scaling law assumes a universal 
form as soon as it is formulated in terms of ‘informational’ quantities. The simple 
and elegant form of this law (15) calls for a theoretical explanation and also raises a 
question, as to whether it can be expected to hold in any ID localization problem. 
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